642 research outputs found

    Photography equipment and techniques. A survey of NASA developments

    Get PDF
    The Apollo program has been the most complex exploration ever attempted by man, requiring extensive research, development, and engineering in most of the sciences before the leap through space could begin. Photography has been used at each step of the way to document the efforts and activities, isolate mistakes, reveal new phenomena, and to record much that cannot be seen by the human eye. At the same time, the capabilities of photography were extended because of the need of meeting space requirements. The results of this work have been applied to community planning and ecology, for example, as well as to space and engineering. Special uses of standard equipment, modifications and new designs, as well as film combinations that indicate actual or potential ecological problems are described

    Electrothermal linear actuator

    Get PDF
    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward

    Valence and magnetic instabilities in Sm compounds at high pressures

    Full text link
    We report on the study of the response to high pressures of the electronic and magnetic properties of several Sm-based compounds, which span at ambient pressure the whole range of stable charge states between the divalent and the trivalent. Our nuclear forward scattering of synchrotron radiation and specific heat investigations show that in both golden SmS and SmB6 the pressure-induced insulator to metal transitions (at 2 and about 4-7 GPa, respectively) are associated with the onset of long-range magnetic order, stable up to at least 19 and 26 GPa, respectively. This long-range magnetic order, which is characteristic of Sm(3+), appears already for a Sm valence near 2.7. Contrary to these compounds, metallic Sm, which is trivalent at ambient pressure, undergoes a series of pressure-induced structural phase transitions which are associated with a progressive decrease of the ordered 4f moment.Comment: 15 pages (including 7 figures) submitted to J. Phys.: Condens. Matte

    Valence and magnetic ordering in intermediate valence compounds : TmSe versus SmB6

    Full text link
    The intermediate valent systems TmSe and SmB6 have been investigated up to 16 and 18 GPa by ac microcalorimetry with a pressure (p) tuning realized in situ at low temperature. For TmSe, the transition from an antiferromagnetic insulator for p<3 GPa to an antiferromagnetic metal at higher pressure has been confirmed. A drastic change in the p variation of the Neel temperature (Tn) is observed at 3 GPa. In the metallic phase (p>3 GPa), Tn is found to increase linearly with p. A similar linear p increase of Tn is observed for the quasitrivalent compound TmS which is at ambiant pressure equivalent to TmSe at p=7 GPa. In the case of SmB6 long range magnetism has been detected above p=8 GPa, i.e. at a pressure slightly higher than the pressure of the insulator to metal transition. However a homogeneous magnetic phase occurs only above 10 GPa. The magnetic and electronic properties are related to the renormalization of the 4f wavefunction either to the divalent or the trivalent configurations. As observed in SmS, long range magnetism in SmB6 occurs already far below the pressure where a trivalent Sm3+ state will be reached. It seems possible, to describe roughly the physical properties of the intermediate valence equilibrium by assuming formulas for the Kondo lattice temperature depending on the valence configuration. Comparison is also made with the appearance of long range magnetism in cerium and ytterbium heavy fermion compounds.Comment: 22 pages including figure

    Pragmatics development in deaf and hard of hearing children: a call to action

    Get PDF
    Although major strides have been made in supporting the linguistic development of deaf and hard of hearing (DHH) children, a high risk of pragmatic delay persists and often goes unrecognized. Pragmatic development (the growing sensitivity to one’s communication partner when producing and comprehending language in context) is fundamental to children’s social-cognitive development and to their well-being. We review the reasons why DHH children are vulnerable to pragmatic developmental challenges and the potential to create positive change. In this call to action, we then urge (1) medical providers to recognize the need to monitor for risk of pragmatic difficulty and to refer for timely intervention (beginning in infancy), (2) allied health professionals involved in supporting DHH children to incorporate development of pragmatic abilities into their work and to foster awareness among caregivers, and (3) the research community to deepen our understanding of pragmatics in DHH children with investigations that include pragmatics and with longitudinal studies that chart the paths to positive outcomes while respecting the diversity of this population. By working together, there is substantial potential to make rapid progress in lifting developmental outcomes for DHH children

    Flow-driven branching in a frangible porous medium

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Derr, N. J., Fronk, D. C., Weber, C. A., Mahadevan, A., Rycroft, C. H., & Mahadevan, L. Flow-driven branching in a frangible porous medium. Physical Review Letters, 125(15), (2020): 158002, doi:10.1103/PhysRevLett.125.158002.Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.N. D. was partially supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard, Grant No. 1764269, and the Harvard Quantitative Biology Initiative. C. H. R. and N. D. were partially supported by the National Science Foundation under Grant No. DMS-1753203. C. H. R. was partially supported by the Applied Mathematics Program of the U.S. DOE Office of Science Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. L. M. was partially supported by the National Science Foundation under Grants No. DMR-2011754 and No. DMR-1922321

    Flow-driven branching in a frangible porous medium

    Get PDF
    Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium in response to the flow, in turn causing flow pathways to evolve. We provide a simple theoretical framework that embodies this feedback mechanism in a multi-phase model for flow through a fragile porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Field Reentrance of the Hidden Order State of URu2Si2 under Pressure

    Full text link
    Combination of neutron scattering and thermal expansion measurements under pressure shows that the so-called hidden order phase of URu2Si2 reenters in magnetic field when antiferromagnetism (AF) collapses at H_AF (T). Macroscopic pressure studies of the HO-AF boundaries were realized at different pressures via thermal expansion measurements under magnetic field using a strain gauge. Microscopic proof at a given pressure is the reappearance of the resonance at Q_0=(1,0,0) under field which is correlated with the collapse of the AF Bragg reflections at Q_0.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp
    corecore